
Generating CAGE defined
Transcriptional Start Sites

by Timo Lassmann (timolassmann at gmail dot com)

June 8, 2011



Introduction

Cap Analysis of Gene Expression (CAGE) captures the 5’ ends of RNAs expressed in the cell.
Analysis of the deeply sequenced cellular fractionations has shown that CAGE signal occurs
mainly in the promoter regions of known genes but also along the body of genes and intergeni-
cally. The purpose of this document is to describe a strategy to separate CAGE signal into
genuine transcriptional initiation sites and the remaining signal.
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Workflow

Deriving a sequence based TSS model.
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Figure 1: Workflow

The mappings of all ENCODE CAGE libraries
were pooled. The data was re-formatted into
CAGE defined transcriptional start sites (CTSS)
which are single nucleotide positions where the
mapping of CAGE reads start. CTSS is a term
used historically at RIKEN but given the recent
findings may not be appropriate anymore. A raw
expression count equal to the sum of reads map-
ping to the single nucleotide position are assigned
to each CTSS. CTSS with fewer than 10 reads in
all libraries were discarded. To identify larger re-
gions exhibiting CAGE signal we used the para-
metric clustering algorithm ”paraclu” [1] developed
by Martin Frith specifically for CAGE data. The
output is a hierarchal organization of overlapping
clusters delineating very broad regions and sub-
clusters focusing on increasingly denser regions of
CAGE expression (see Figure 1 of [1] for further explanation). Given that the length of a nu-
cleosome is approximately 150bp we selected all clusters shorter than 200bp from the set of
generated clusters for downstream analysis. The number of obtained clusters at this stage is al-
ways much higher than the number of expressed genes in the cell. We applied the TSS predictor
developed by me on these clusters to sub-classify these clusters (see below for details).
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Figure 2: Region HMM model architec-
ture. The HMM is composed of a series of re-
gion models where in and next are upstream
and downstream S states. States M1 - M4

can model short sequence motifs of lengths
2,3 and 4. States M5 - M8 are not shown.

The TSS predictor is a non-supervised clas-
sifier based on modeling sequences surround-
ing CAGE regions via hidden markov mod-
els (HMMs). Two models are trained on all
sequenced surrounding CAGE clusters. The
model architecture is designed to capture se-
quence motifs of length 2-8 present at a certain
distances from the middle of each cluster (Fig.
2). During training, the main model uses the
number of raw reads observed in each cluster
to proportionally weight the corresponding se-
quence while the background model assumes
equal weight for all sequences. The posterior
probability of each cluster fitting to the main
model is calculated using Bayes’ rule. Essen-
tially we are asking what genomic sequence
features give rise to many reads in the region.

Predicting TSSs in individual
libraries and cell lines.

To apply the predictor to cell lines we re-clustered the data as before but this time using only
reads from individual cell-lines. The outcome are boundaries delineating all regions containing
CAGE reads in each cell line. Boundaries containing less than 10 reads in all libraries were
discarded. The TSS predictor was run on the remaining boundaries, but using the TSS model
derived from all data.

Evaluation Strategy

To evaluate the predictions we overlapped CAGE clusters with windows surrounding the 5’ ends
of known GENCODE genes. A cluster with a high posterior probability overlapping a known
promoter was counted as a true positive while intergenic clusters with a high posterior probabil-
ity was counted as a false positive (Fig. 3). NOTE: the latter are likely novel TSSs currently not
covered by GENCODE. By selecting a series of cutoffs receiver operating characteristic (ROC)
and their area under ROC curve (AUC) was derived in various settings.
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Figure 3: Evaluation Strategy. All CAGE clusters (shown as red arrows) are annotated by
intersection with GENCODE TSSs. A series of cutoffs is selected and true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) are counted as shown.

Assigning Compartment Specific Expression

For each library be intersected all CTSSs with the cell specific boundaries defined by the clus-
tering. The cluster expression was set to sum of raw read counts making up the CTSSs. The
raw expression was normalized by the number of mapped reads and multiplied by one million
(tags per million - tpm).

To facilitate the downstream analysis I split the clusters in each library into three categories.
All files are in ENCODE RNA Elements: BED6 + 3 Scores Format.

1. . . . tss high.bed lists predicted TSS with at least 1 tpm expression. Columns correspond
to:

(a) Chromosome

(b) Start

(c) End

(d) (coordinates):(paraclu cluster strength):(TSS prediction strength)

(e) empty

(f) Strand

(g) level - expression level in tpm

(h) signif - currently empty - will be IDR

(i) score2 - raw number of reads

2. . . . tss low.bed lists predicted TSS with below 1 tpm expression.

3. . . . non-tss.bed lists remaining non-TSS CAGE peaks.



Results:

Prediction accuracy

ROC curves demonstrate a good overall prediction performance of our predictor (Fig. 4). Dif-
ferences between individual cell lines appear to be mainly due to false positives. Since these
correspond to novel promoters, it is not unexpected to see such differences when using a fixed set
of annotations to compare against. More pertinent is the below optimal sensitivity (the dashed
line corresponds to 0.95 sensitivity) indicating that a small fraction of promoters is missed by
the predictor. Manual inspection reveals that these promoters are usually on top or very close
to exons confusing the predictor. I will attempt to improve the accuracy for these cases but to
be practical, merging GENCODE TSSs and CAGE defined TSS will address this glitch.

Basic Statistics

The number of CAGE elements in the three categories are shown in Figure 5-7. Different
sequencing depths and CAGE protocols should have effects on these statistics, especially before
IDR. However, it is good to see that for polyA+ libraries approximately 10k TSS CAGE peaks
are predicted independently in all samples.

GENCODE overlap

Intersection of the CAGE peaks with GENCODE annotations reveals a strong correspondence
between the prediction and annotation. Highly expressed TSS predicted elements commonly
overlap +/- 5 GENCODE TSSs (Figures 8 - 12) while non-TSS peaks are enriched in exons,
introns and in inter-genic regions.
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Figure 4: ROC curve demonstrating the agreement of TSS prediction with known
promoter regions. As the standard of truth we used 10bp windows around known GENCODE
gene models.
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Figure 5: Number of TSS predicted CAGE peaks with at least 1 tpm.
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Figure 6: Number of TSS predicted CAGE peaks with at least < 1 tpm.
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Figure 7: Number of non-TSS CAGE peaks.
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Figure 8: GENCODE annotation of predicted peaks in K562.
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Figure 9: GENCODE annotation of predicted peaks in Gm12878
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Figure 10: GENCODE annotation of predicted peaks in Hepg2
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Figure 11: GENCODE annotation of predicted peaks in HelaS3
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Figure 12: GENCODE annotation of predicted peaks in Huvec
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